1. ВВЕДЕНИЕ
Потребление электроэнергии находит все большее развитие в промышленности, на транспорте, в коммунальном хозяйстве, в быту и других областях.
Производство электроэнергии в Советском Союзе в 1958 г. составило 233 млрд. квт·ч. Для сравнения напомним, что в дореволюционной России в 1913 г. производство электроэнергии составляло всего 1,94 млрд. квт·ч. Таким образом, производство электроэнергии с 1913 по 1958 г. возросло в 120 раз. В 1956 г. расход электроэнергии на одного рабочего составлял 8498 квт·ч. Считается, что мировое потребление электроэнергии возрастает более чем в 2 раза через каждые 10 лет. У нас в Советском Союзе темпы роста значительно выше.
При таком широком применении электроэнергии особое значение имеет обеспечение безопасности при эксплуатации электрических установок и пользовании электрическими приемниками — двигателями, осветительными приборами, всякого рода аппаратами и другими устройствами.
Несоблюдение правил устройства электрических установок, правил их эксплуатации, неосторожное обращение с электроприемниками, прикосновение к токоведущим частям, дефекты конструкции электроприемников — все это может привести к тяжелым поражениям от электрического тока (ожоги, ослепление от дуги и т. п.) и даже к смертельным случаям.
Поражения и травмы от электрического тока могут произойти под воздействием как высоких, так и низких напряжений. Большинство несчастных случаев происходит при напряжениях 380 и 220 в (вольт), как наиболее распространенных и с которыми часто имеют дело люди, не имеющие специальной подготовки.
Таким образом, осторожное обращение с электрическими устройствами требуется всегда. При работе в особо неблагоприятных условиях, например вблизи металлических масс, в целях обеспечения безопасности для переносных электроприемников применяются пониженные напряжения 36 и 12 с.
Сопротивление человеческого тела не является величиной определенной и может иметь широкие пределы колебаний от примерно 1 000 (и ниже) до нескольких десятков тысяч ом. Оно зависит от многих условий, в частности от состояния и сопротивления кожи в месте прикосновении (сухая, влажная, наличие повреждений верхнего рогового слоя), размера поверхности прикосновения и характера его (плотный охват или случайное кратковременное прикосновение), величины приложенного напряжения и других факторов. Эти причины определяют величину тока через тело человека.
Один и тот же ток воздействует на разных людей в разной степени, а также различно на одного и того же человека в зависимости от его состояния в момент поражения. Во всяком случае токи порядка 30-40 ма (миллиампер) уже могут быть опасными для жизни (имели место случаи смертельных поражений и при более низких значениях тока) и вызывать паралич дыхания и нарушения деятельности сердца.
В ряде случаев поражения электрическим током может наступить так называемая «мнимая смерть» — состояние, когда в течение некоторого времени после поражения путем применения искусственного дыхания может быть восстановлена деятельность сердца и легких.
Одна из причин поражения электрическим током — повреждение изоляции электроприемников. При таком повреждении прикосновение к металлическому корпусу электроприемника равносильно прикосновению к голым токоведущим частям.
Чтобы защитить людей от поражения электрическим током при повреждениях изоляции, корпусы электрических приемников заземляются.
Рассмотрим, в чем состоит смысл такого заземления, которое называется защитным, и как его нужно устраивать, чтобы обеспечить необходимую безопасность. При этом будем рассматривать отдельно сети с изолированной и заземленной нейтралью, так как условия устройства заземлений в них различны.
У нас в Советском Союзе сети 3, 6, 10 и 35 кв (киловольт, т. е. тысяч вольт) работают с изолированной ней
тралью трансформаторов и генераторов. Сети 380 и 220 в могут работать как с изолированной, так и с заземленной нейтралью, однако наиболее распространенные четырехпроводные сети 380/220 и 220/127 в в соответствии с требованиями «Правил устройства электро-установок» должны иметь заземленную нейтраль.
2. ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ В СЕТИ С ИЗОЛИРОВАННОЙ НЕЙТРАЛЬЮ
На рис. 1 изображена схема сети трехфазного тока, питаемой от трансформатора с изолированной нейтралью. Для простоты на рисунке показана только одна вторичная обмотка трансформатора. Она изображена соединенной в звезду, однако все сказанное ниже относится также к случаю соединения обмотки в треугольник.
Как бы хороша ни была в целом изоляция токоведущих частей сети от земли, все же проводники сети имеют связь с землей. Связь эта— двоякого рода.
Рис. 1. Схема сети трехфазного тока с изолированной нейтралью.
1. Изоляция токоведущих частей имеет определенное сопротивление по отношению к земле, его обычно выражают в мегомах (Мом или 1 000 000 ом). Это означает, что через изоляцию проводников и землю протекает ток некоторой величины. При хорошей изоляции этот ток весьма мал.
Допустим, например, что между проводником одной фазы сети и землей напряжение равно 220 в, а измеренное мегомметром сопротивление изоляции этого провода равно 0,5 Мом. Тогда ток на землю этой фазы равен а (а — ампер) или 0,44 ма. Этот ток называется током утечки.
Условно для наглядности на схеме сопротивления изоляции трех фаз rА, rB, rC изображаются в виде сопротивлений, присоединенных каждое к одной точке провода. На самом деле токи утечки в исправной сети раслределяются равномерно по всей длине проводов; в каждом участке сети они замыкаются через землю.
2. Связь второго рода образуется емкостью между проводниками сети и землей. Как это понимать?
Каждый проводник сети и землю можно представить себе как две обкладки протяженного конденсатора. В воздушных линиях проводник и земля—обкладки конденсатора, а воздух между ними-—диэлектрик. В кабельных линиях обкладками конденсатора являются жила кабеля и металлическая оболочка, соединенная с землей, а диэлектриком— изоляция между жилами. При переменном на-
Рис. 2. Замыкание на землю в сети с изолированной нейтралью.
пряжении изменение зарядов конденсаторов вызывает возникновение соответствующих переменных токов. Эти так называемые емкостные токи в исправной сета также равномерно распределены по длине проводов и в каждом отдельном участке замыкаются через землю. На рис. 1 сопротивления емкостей трех фаз на землю хA, хB и хC также условно показаны присоединенными каждое к одной точке сети.
Посмотрим, что же произойдет в изображенной на рис. 1 сети, если в одной из фаз (например, A) произойдет замыкание на землю, т. е. провод этой фазы будет соединен с землей через относительно малое сопротивление.
Такой случай изображен на рис. 2. Поскольку сопротивление между проводом фазы А и землей мало, то токи утечки и емкостные токи на землю этой фазы заменяются током замыкания на землю. Теперь под воздействием линейного напряжения сети Uл через место замыкания и землю будут протекать токи утечки и емкостные токи двух исправных фаз, как показано стрелками на рисунке.
Замыкание, показанное на рис. 2, называется одно-фазным замыканием на землю, а возникающий при этом аварийным ток — током однофазного замыкания.
Представим себе теперь, что однофазное замыкание вследствие повреждения изоляции произошло не непосредственно на землю, а в каком-нибудь электроприемнике — электродвигателе, аппарате, либо на конструкцию, по которой проложены электрические провода, на ограждение электропроводок и т. д. Такое замыкание называется замыканием на корпус.
Рис. 3. Замыкание на корпус в сети с изолированной нейтралью при отсутствии заземления.
Если при этом электроприемник или конструкция выполнены из металла и не соединены надежно с землей (рис. 3), то корпус приобретает потенциал фазы сети или близкий к нему. Прикосновение к корпусу равносильно прикосновению к фазе. Через тело человека, его обувь, пол, землю, сопротивления утечки и емкостные сопротивления других фаз образуется замкнутая цепь (для простоты на рис. 3 емкостные сопротивления не показаны). Ток в этой цепи зависит от ее сопротивления и может нанести человеку тяжелое поражение или оказаться для него смертельным.
Из сказанного следует, что для протекания тока через землю необходимо наличие замкнутой цепи (иногда представляют себе, что ток «уходит в землю» — это неверно).
Чтобы предотвратить поражения людей при замыканиях на корпус, все корпуса электроприемников, металлические конструкции и т. п., которые могут оказаться из-за повреждения изоляции под опасным напряжением, должны быть заземлены (рис. 4).
Как видно из рис. 4, при наличии заземления человек, прикасающийся к заземленному корпусу, оказавшемуся под напряжением, присоединен параллельно к цепи замыкания на участке между корпусом и землей.
Назначение защитного заземления заключается в том, чтобы создать между корпусом защищаемого устройства и землей электрическое соединение достаточно малого сопротивления, для того чтобы в случае замыкания на корпус прикосновение к последнему человека (параллельное присоединение) не могло вызвать через его тело ток такой величины, который угрожал бы его жизни или здоровью.
Рис. 4. Заземление электроприемника.
Рис. 5. Прикосновение к токоведущему проводнику при наличии в сети "земли".
Отсюда следует, что для обеспечения безопасности пригодно не всякое заземление, а только имеющее достаточно малое сопротивление.
Если заземление выполнено в соответствии с требованиями «Правил», т. е. с достаточно малым сопротивлением (об этом см. ниже в § 7), то непосредственной опасности при прикосновении к заземленному корпусу не возникает.
В сетях с изолированной нейтралью отключение поврежденного участка сети при однофазных замыканиях на землю или корпус (т. е. при наличии «земли» в сети) обычно не применяется, и установка при наличии такого замыкания (о чем сигнализируют приборы контроля изоляции) может продолжать работать. Однако сеть с наличием в ней однофазного замыкания все же должна рассматриваться как находящаяся в аварийном состоянии, так как общие условия безопасности при таком состоянии сети резко ухудшаются. Так, наличие «земли» увеличивает опасность поражения электрическим током, даже при исправном заземлении. Это видно, например, из рис. 5, где показано протекание тока поражения при случайном прикосновении к токоведущему проводу и не устраненной «земле» в сети.
Помимо того, напряжения неповрежденных фаз по отношению к земле возрастают до линейных и способствуют возникновению второго замыкания на землю в другой фазе.Образовавшееся двойное замыкание на землю представляет собой для человека более серьезную опасность по сравнению с однофазным замыканием.
Поэтому однофазное замыкание на землю и на корпус должно устраняться в кратчайший срок.
В некоторых случаях для обеспечения безопасности приходится применять, кроме заземления, еще дополнительные меры (быстродействующее отключение, выравнивание потенциалов). Так, при особо неблагоприятных условиях (например, в сырых местах — шахтах, на торфоразработках и-т. п.), а также на линиях, питающих особо ценные агрегаты, применяется специальная быстродействующая защита, отключающая аварийный участок при замыканиях на корпус (и непосредственно на землю).
Мы рассмотрели выше назначение защитных заземлений. В электрических установках имеют место и другие заземления, которые необходимы по условиям эксплуатации, например заземления разрядников, заземления нейтралей трансформаторов и др. В отличие от защитных они называются рабочими заземлениями.
3. ЗАЗЕМЛЯЮЩЕЕ УСТРОЙСТВО
Соединение заземляемых частей электроустановки с землей осуществляется при помощи заземлителей и заземляющих проводников.
Заземлители представляют собой металлические проводники (трубы, уголки, полосы), располагаемые в земле в определенных количестве и порядке.
Допустим, что в земле в точке О (рис. 6) находится за-землитель 3 в виде уголка и через этот заземлитель протекает ток однофазного замыкания на землю. Зададимся целью определить напряжения по отношению к земле на разных расстояниях от заземлителя. Если замерить напряжения между точками земли, находящимися на разных расстояниях в любом направлении от заземлителя, и точками нулевого потенциала, затем построить график зависимости этих напряжений от расстояния до заземлителя, то получится кривая, изображенная на рис. 6.
Из этой кривой видно, что напряжения по отношению к земле всех точек, расположенных от заземлителя на расстояниях, больших 20 м(точка М), близки к нулю.
Причина этого явления заключается в том, что сечение массива земли, через которое протекает ток замыкания на землю, по мере удаления от заземлителя быстро увеличивается; при этом происходит растекание тока в земле. На расстоянии более 20 м от заземлителя сечение массива земли настолько возрастает, что плотность тока становится весьма малой; напряжения между точками земли и точка-
Рис. 6. Напряжение по отношению к земле на различных расстояниях от заземлителя и напряжение шага.
ми, еще более удаленными, не обнаруживается сколько-нибудь ощутимо. Сопротивление, которое оказывает току земля на участке растекания, называется сопротивлением растеканию заземлителя. Его часто сокращенно называют сопротивлением заземлителя (не следует смешивать с сопротивлением заземлителя как проводника).
Заземляющие проводники соединяют заземляемые части электроустановок с заземлителями. В целом заземляющие проводники и заземлители образуют заземляющее устройство.
Сопротивление заземляющего устройства состоит, таким образом, из:
1) сопротивления растеканию заземлителя, в которое входит также сопротивление контакта между заземлителем и землей;
сопротивление контакта составляет незначительную часть сопротивления растеканию заземлителя; даже наличие на стальном заземлителе слоя окиси (ржавчины) не оказывает существенного влияния на сопротивление растеканию заземлителя;
2) сопротивления заземляющей сети, включающего в себя заземляющие проводники; в большинстве случаев оно составляет незначительную долю общего сопротивления заземляющего устройства.
Если обозначить сопротивление заземляющего устройства через RЗ (ом), а ток замыкания на корпус через IЗ (a), то напряжение корпуса по отношению к земле будет равно произведению IЗRЗ=UЗ(в).
Если, например, ток замыкания на землю в сети равен 15 а, а сопротивление заземляющего устройства 4 ом, то напряжение по отношению к земле UЗ равно 15·4 = 60 в.
4. НАПРЯЖЕНИЕ ШАГА. НАПРЯЖЕНИЕ ПРИКОСНОВЕНИЯ. ВЫРАВНИВАНИЕ ПОТЕНЦИАЛОВ
Кривая на рис. 6 показывает, что напряжения по отношению к земле вблизи заземлителя при протекании через него тока замыкания на землю определяются точками А, Б, В, Г и т. д., а падения напряжения между этими точками — отрезками АД, БЕ, ВЖ и т. д. Таким образом, если разбить линию ОМ на участки длиной 0,8 м, что соответствует длине шага человека, то ноги его могут оказаться в точках разного потенциала. Чем ближе к заземлителю, тем напряжения между этими точками будут больше (АД > БЕ и БЕ > ВЖ) . Через тело человека может в таких случаях протекать ток, величина которого может оказаться опасной.
Напряжение, воздействию которого в подобном случае может подвергаться человек, называется напряжением шага (Uш). На рис. 6 справа показано в увеличенном масштабе напряжение шага, когда ноги человека захватывают участок, соответствующий точкам В и Г кривой.
Напряжение шага может возникнуть также при падении находящегося под напряжением провода на землю, вблизи него. Опасны такие случаи и для крупных животных—лошадей, коров, тем более (помимо других причин), что шаг их значительно больше шага человека. Поэтому при падении провода на землю необходимо отключать аварийную линию (если она не отключилась автоматически защитой), а до того не допускать приближения людей и животных к месту падения провода.
Прикасаясь к корпусу электроприемника с поврежденной изоляцией (рис. 4), человек может оказаться либо под полным напряжением корпуса по отношению к земле, т. е. напряжением IЗRЗ, либо под частью этого напряжения.
То напряжение, под которым оказывается человек в цепи замыкания, называется напряжением прикосновения Uпр
Напряжение прикосновения, близкое или равное полному напряжению корпуса по отношению к земле, может иметь место, например, если человек, прикасаясь к корпусу с поврежденной изоляцией, стоит непосредственно на земле в сырой или подбитой гвоздями обуви или, еще хуже, вовсе без обуви.
Более благоприятные условия создаются, например, если электрооборудование находится внутри заводского здания, содержащего большое количество станков, машин, трубопроводов, металлоконструкций и т. п., которые в большей или меньшей степени связаны между собой и с корпусами электрооборудования. При замыкании на корпус в каком-либо из электроприемников все указанные части получают примерно одинаковое напряжение по отношению к земле, равное произведению IЗRЗ. Поэтому все здание и, в частности, пол приобретают примерно равное напряжение по отношению к земле. В результате разность потенциалов между корпусом электроприемника и полом существенно уменьшается, происходит выравнивание потенциалов по всей площади помещения. Благодаря этому тело человека, находящееся в цепи замыкания между корпусом электроприемника и полом (рис. 4), оказывается под напряжением прикосновения Uпр, составляющим только часть полного напряжения по отношению к земле (IЗRЗ). Это значительно улучшает условия безопасности.
Степень выравнивания потенциалов зависит от насыщенности здания металлическими конструкциями и оборудованием, от конструкции здания; в железобетонных зданиях, имеющих также перекрытия из железобетона, происходит, например, выравнивание потенциалов, при котором напряжение прикосновения снижается в 2 и более раз. С этой точки зрения металлический пол, будучи связан с электрооборудованием и заземляющим устройством, дал бы наилучшее выравнивание потенциалов (но при этом не надо забывать, что хорошо проводящий и связанный с землей пол создает, с другой стороны, большую опасность при случайном прикосновении к токоведущим частям, находящимся под напряжением, так как при этом в цепи замыкания отсутствует благоприятный фактор — сопротивление пола).
Из сказанного следует, что фактор выравнивания потенциалов имеет первостепенное значение в обеспечении безопасности. В некоторых случаях добиться хороших условий безопасности только одним заземлением оборудования без выравнивания потенциалов было бы невозможно. Это относится, например, к установкам 110 кв, в которых токи однофазного замыкания достигают нескольких тысяч ампер.
5. ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ В СЕТИ С ЗАЗЕМЛЕННОЙ НЕЙТРАЛЬЮ (ЗАНУЛЕНИЕ)
Как было указано ранее, в четырехпроводных сетях 380/220 и 220/127 в в соответствии с требованиями «Правил» применяется заземление нейтралей (нулевых точек) трансформаторов или генераторов. Заземление в таких сетях имеет ряд особенностей.
Рассмотрим вначале трехпроводную сеть 380 или 220 в с заземленной нейтралью. Такая сеть изображена на рис. 7. Если человек прикоснется к проводнику этой сети, то под воздействием фазного напряжения Uф образуется цепь поражения, которая замыкается через тело человека, обувь, пол, землю, заземление нейтрали (см. стрелки). Та же цепь образуется, если человек прикоснется к корпусу с поврежденной изоляцией. Однако выполнить заземление в такой сети таким же образом, как и при изолированной нейтрали, нельзя.
Чтобы это понять, допустим, что такое заземление все же выполнено (рис. 8) и на установке произошло замыкание на корпус двигателя. Ток замыкания будет протекать через два заземлителя — электроприемника RзRв и нейтрали (см. стрелки).
По известному закону электротехники фазное напряжение сети Uф распределится между заземлителями Rз и R0 пропорционально их величинам, т. е. чем больше сопротивление заземлителя, тем больше будет падение напряжения в нем. Если, например, сопротивлениеR0=1 ом, Rз=4 ом, Uф=220 в, то падение напряжения распределится так:
на сопротивлении Rз будем иметь в;
на сопротивлении R0 будем иметь в;
Таким образом, между корпусом электродвигателя и землей возникает достаточно опасное напряжение. Человек, прикоснувшийся к корпусу, может быть поражен электрическим током. Если будет иметь место обратное соотношение сопротивлений, т. е.R0 будет больше, чем Rз, опасное напряжение может возникнуть между землей и корпусами оборудования, установленного возле трансформатора и имеющими общее заземление с его нейтралью.
Рис. 7. Прикосновение к проводнику в сети с заземленной нейтралью.
Рис. 8. Заземление электроприемника в сети с заземленной нейтралью.
По указанной причине в установках с заземленной нейтралью напряжением 380 и 220 в применяется система заземления иного вида: все металлические корпуса и конструкции связываются электрически с заземленной нейтралью трансформатора через нулевой провод сети или специальный зануляющий проводник (рис. 9). Благодаря этому всякое замыканйе на корпус превращается в короткое замыкание, и аварийный участок отключается предохранителем или автоматом. Такая система заземления называется занулением.
Рис. 9. Зануление электроприемника в сети с заземленной нейтралью.
Таким образом, обеспечение безопасности при запулении достигается путем отключения участка сети, в котором произошло замыкание на корпус.
В дальнейшем будем применять общий термин «заземление», а термин «зануленне» будем применять, если речь идет об особенностях этой системы.
Так же как не всякое заземление обеспечивает безопасность, не всякое зануление пригодно для обеспечения безопасности; зануление должно быть выполнено так, чтобы ток короткого замыкания в аварийном участке достигал значения, достаточного для расплавления плавкой вставки ближайшего предохранителя или отключения автомата. Для этого сопротивление цепи короткого замыкания должно быть достаточно малым.
Если отключения не произойдет, то ток замыкания будет длительно протекать по цепи и по отношению к земле возникнет напряжение не только на поврежденном корпусе, но и на всех зануленных корпусах (так как они электрически связаны). Это напряжение равно по величине произведению тока замыкания на сопротивление нулевого провода сети или зануляющего проводника IзRп и может оказаться значительным по величине и, следовательно, опасным особенно в местах где отсутствует выравнивание потенциалов. Чтобы предупредить подобную опасность, необходимо точно выполнять требования «Правил» к устройству занулений (подробнее об этом см. § 11).
6. В КАКИХ СЛУЧАЯХ ТРЕБУЕТСЯ ЗАЗЕМЛЕНИЕ
В соответствии с требованиями «Правил» заземлять следует металлические нетоковедущие части электроустановок и оборудования во всех производственных помещениях и наружных установках, как-то:
а) корпуса электрических машин, трансформаторов, аппаратов, светильников и т. п.;
б) приводы электрических аппаратов;
в) вторичные обмотки измерительных трансформаторов и трансформаторов местного освещения 36 в и корпуса последних;
г) каркасы распределительных щитов, щитов управления, щитков и шкафов;
д) металлические и железобетонные конструкции подстанций и открытых распределительных устройств, металлические корпуса кабельных муфт, металлические оболочки кабелей и проводов, стальные трубы электропроводки, металлические и железобетонные опоры воздушных линий и т. п.
Не требуется специально заземлять:
а) арматуру подвесных и штыри опорных изоляторов, кронштейны и осветительную арматуру при установке их на деревянных опорах и деревянных конструкциях открытых подстанций (дерево рассматривается как изоляция); однако заземление выполняется, если это требуется по условиям защиты от атмосферных перенапряжений (грозозащиты):
б) оборудование, установленное на заземленных металлических конструкциях при наличии на опорных поверхностях надежного электрического контакта (зачистка);
п) корпуса электроизмерительных приборов, реле и т. п., установленные на щитах, щитках, в шкафах;
г) кабельные конструкции, по которым проложены кабели любых напряжений с металлическими оболочками, заземленными с обоих концов линии;
д) рельсовые пути, если они выходят за территорию электростанций, подстанций, распределительных устройств;
е) съемные или открывающиеся части на металлических заземленных каркасах и в камерах распределительных^ устройств, на ограждениях, в шкафах и т. п.;
ж) металлические конструкции в помещениях аккумуляторных батарей при напряжении до 220 в включительно.
Заземление металлических частей электроустановок вообще не требуется:
а) при номинальном напряжении 380 в и ниже переменного тока и 440 в и ниже постоянного тока в сухих производственных помещениях без повышенной и особой опасности.
Помещения с повышенной опасностью в соответствии с „Правилами“ характеризуются наличием одного из следующих условий:
а) сырости или проводящей пыли;
б) токопроводящих полов (металлических, земляных, железобетонных, кирпичных и т. п.);
в) высокой температуры;
г) возможности одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п., с одной стороны, и к металлическим корпусам электрооборудования — с другой.
Помещения особо опасные характеризуются наличием одного из следующих условий:
а) особой сырости;
б) химически активной среды;
в) одновременного наличия двух или более условий повышенной опасности.
б) при номинальном напряжении сети ниже 127 в переменного тока и 110 в постоянного тока во всех помещениях (за исключением взрывоопасных; в последних заземление следует выполнять при любых напряжениях).
СКО-Групп © 2008-2019 проектирование и монтаж систем внутреннего электроснабжения, молниезащиты, кабельного обогрева, систем заземления |
111141, Москва, 3-й пр-д Перова поля, д.8, офис 101 Электронная почта: sko-group@inbox.ru |
Телефон:
+7 (495) 943-29-97
+7 (926) 620-42-62
|
Создание сайта – ARD media |